El transporte de muchas moléculas diferentes
a través de la membrana es altamente específico, es decir, la
permeabilidad de una molécula está relacionada con su estructura química. En
tanto que una molécula puede penetrar con facilidad en la célula, otra del
mismo tamaño pero con una estructura ligeramente diferente puede ser excluida
por completo. Este tipo de selectividad se atribuye a proteínas permeasas (de
transporte o translocadora) con un sitio capaz de
reconocer la molécula que debe ser transportada. Las permeasas, aceleran
el proceso de transporte, imparten selectividad especial y son
recicladas, lo cual significa que permanecen invariables después de contribuir
a la entrada o salida de la molécula. Algunas permeasas solo pueden
transportar si hay un gradiente de concentración (difusión) mientras que otras
lo hacen aún en contra de una desfavorable (transporte activo).
3.2.2.4.1. Transporte pasivo.
Sólo obedece a las leyes físicas y se produce cuando existe un gradiente de concentración y ocurre desde un lugar de mayor concentarción hacia el de menor concentración. Es importante diferenciar la difusión de moléculas y la de iones. La difusión de moléculas está en función de volumen molecular y de la solubilidad en lípidos, cuanto más solubles más rápido penetran y al igual solubilidad en lípidos las moléculas más pequeñas penetran con más facilidad.
La difusión de iones depende de su concentración y de la existencia de gradientes eléctricos a través de la membrana, que determina un potencial eléctrico específico para la membrana. Estas dos propiedades se encuentran íntimamente relacionadas, ya que el potencial eléctrico depende de la distribución desigual de los iones a ambos lados de la membrana. Es un proceso de difusión de sustancias a través de la membrana. Se produce siempre a favor del gradiente, es decir, del medio donde hay más hacia el medio donde hay menos. Este transporte puede darse por:
Sólo obedece a las leyes físicas y se produce cuando existe un gradiente de concentración y ocurre desde un lugar de mayor concentarción hacia el de menor concentración. Es importante diferenciar la difusión de moléculas y la de iones. La difusión de moléculas está en función de volumen molecular y de la solubilidad en lípidos, cuanto más solubles más rápido penetran y al igual solubilidad en lípidos las moléculas más pequeñas penetran con más facilidad.
La difusión de iones depende de su concentración y de la existencia de gradientes eléctricos a través de la membrana, que determina un potencial eléctrico específico para la membrana. Estas dos propiedades se encuentran íntimamente relacionadas, ya que el potencial eléctrico depende de la distribución desigual de los iones a ambos lados de la membrana. Es un proceso de difusión de sustancias a través de la membrana. Se produce siempre a favor del gradiente, es decir, del medio donde hay más hacia el medio donde hay menos. Este transporte puede darse por:
3.2.2.4.1.1. Difusión simple.
Es el paso de pequeñas moléculas a favor del gradiente; puede realizarse a través de la bicapa lipídica o a través de canales proteícos.
Es el paso de pequeñas moléculas a favor del gradiente; puede realizarse a través de la bicapa lipídica o a través de canales proteícos.
3.2.2.4.1.1.1. Difusión simple a través de la
bicapa.
Así entran moléculas lipídicas como las hormonas esteroideas, anestésicos como el éter y fármacos liposolubles. Y sustancias apolares como el oxígeno y el nitrógeno atmosférico. Algunas moléculas polares de muy pequeño tamaño, como el agua, el CO2, el etanol y la glicerina, también atraviesan la membrana por difusión simple. La difusión del agua recibe el nombre de ósmosis.
Así entran moléculas lipídicas como las hormonas esteroideas, anestésicos como el éter y fármacos liposolubles. Y sustancias apolares como el oxígeno y el nitrógeno atmosférico. Algunas moléculas polares de muy pequeño tamaño, como el agua, el CO2, el etanol y la glicerina, también atraviesan la membrana por difusión simple. La difusión del agua recibe el nombre de ósmosis.
3.2.2.4.1.1.2. Difusión simple a través de canales.
Se realiza mediante las denominadas proteínas de canal. Así entran iones como el Na+, K+, Ca+2, Cl-. Las proteínas de canal son proteínas con un orificio o canal interno, cuya apertura está regulada, por ejemplo por ligando, como ocurre con neurotransmisores u hormonas, que se unen a una determinada región, el receptor de la proteína de canal, que sufre una transformación estructural que induce la apertura del canal.
Se realiza mediante las denominadas proteínas de canal. Así entran iones como el Na+, K+, Ca+2, Cl-. Las proteínas de canal son proteínas con un orificio o canal interno, cuya apertura está regulada, por ejemplo por ligando, como ocurre con neurotransmisores u hormonas, que se unen a una determinada región, el receptor de la proteína de canal, que sufre una transformación estructural que induce la apertura del canal.
3.2.2.4.1.1.3. Difusión facilitada.
Permite el transporte de pequeñas moléculas polares, como los aminoácidos, monosacáridos, etc, que al no poder atravesar la bicapa lipídica, requieren que proteínas trasmembranosas faciliten su paso. Estas proteínass reciben el nombre de proteínas transportadoras o permeasas que, al unirse a la molécula a transportar sufren un cambio en su estructura que arrastra a dicha molécula hacia el interior de la célula.
Permite el transporte de pequeñas moléculas polares, como los aminoácidos, monosacáridos, etc, que al no poder atravesar la bicapa lipídica, requieren que proteínas trasmembranosas faciliten su paso. Estas proteínass reciben el nombre de proteínas transportadoras o permeasas que, al unirse a la molécula a transportar sufren un cambio en su estructura que arrastra a dicha molécula hacia el interior de la célula.
• Investigue sobre ejemplos específicos de
cada una de las difusiones discutidas.
• Las sustancias que atraviesan los poros nucleares que tipo de transporte utilizan.
• En esta siguiente figura explique que mecanismo de transporte utilizan las proteínas sintetizadas en el citosol para llegar a los diferentes organelos.
• Las sustancias que atraviesan los poros nucleares que tipo de transporte utilizan.
• En esta siguiente figura explique que mecanismo de transporte utilizan las proteínas sintetizadas en el citosol para llegar a los diferentes organelos.
3.2.2.4.1.2. Transporte activo.
En este proceso también actúan proteínas de membrana, pero éstas requieren energía, en forma de ATP, para transportar las moléculas al otro lado de la membrana. Se produce cuando el transporte se realiza en contra del gradiente electroquímico. Son ejemplos de transporte activo la bomba de Na/K, y la bomba de Calcio.
La bomba de Na+/K+ requiere una proteína transmembranosa que bombea Na+ hacia el exterior de la membrana y K+ hacia el interior. Esta proteína actúa contra el gradiente gracias a su actividad como ATP-asa, ya que rompe el ATP para obtener la energía necesaria para el transporte. Por este mecanismo, se bombea 3 Na+ hacia el exterior y 2 K+ hacia el interior, con la hidrólisis acoplada de ATP. El transporte activo de Na+ y K+ tiene una gran importancia fisiológica. De hecho todas las células animales gastan más del 30% del ATP que producen (y las células nerviosas más del 70%) para bombear estos iones.
En este proceso también actúan proteínas de membrana, pero éstas requieren energía, en forma de ATP, para transportar las moléculas al otro lado de la membrana. Se produce cuando el transporte se realiza en contra del gradiente electroquímico. Son ejemplos de transporte activo la bomba de Na/K, y la bomba de Calcio.
La bomba de Na+/K+ requiere una proteína transmembranosa que bombea Na+ hacia el exterior de la membrana y K+ hacia el interior. Esta proteína actúa contra el gradiente gracias a su actividad como ATP-asa, ya que rompe el ATP para obtener la energía necesaria para el transporte. Por este mecanismo, se bombea 3 Na+ hacia el exterior y 2 K+ hacia el interior, con la hidrólisis acoplada de ATP. El transporte activo de Na+ y K+ tiene una gran importancia fisiológica. De hecho todas las células animales gastan más del 30% del ATP que producen (y las células nerviosas más del 70%) para bombear estos iones.
No hay comentarios:
Publicar un comentario